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In a recent paper the first author has shown that a spherical gravitating liquid planet 
without spin and having uniform temperature cannot be stable unless the Adams- 
Williamson condition relating density distribution and compressibility holds throughout 
the sphere. It is assumed that spherical symmetry obtains, in that the compressibility 
and density are functions only of 1 stance from the center of the sphere. Now 
although constant compressibility is not to be expected as a general feature, it seems a 
basic question to consider what the distribution of density in such a sphere would be 
if the compressibility were constant. This paper gives the density distribution as well as the 
gravity acceleration distribution. The latter is found to exhibit some interesting features. 

1. INTRODUCTION 

In 1963 the first author [6] showed that for an earth model having a liquid core, 
we cannot solve the statistical equations for deformation under surface mass loads, 
unless the Adams-Williamson [l] condition holds in the liquid core. Since then 
a number of papers have appeared in the literature, some of them supporting this 
contention, and some disputing it. A brief survey of this literature has recently been 
given by Longman [9] in a paper where a definitive mathematical proof is given 
that without the Adams-Williamson condition a self-gravitating liquid planet 
(without spin and temperature effects) cannot be stable. Physical reasons for the 
requirement were also suggested. 

The present paper starts from the Adams-Williamson condition as applied to 
a liquid, and assuming constant compressibility calculates the density distribution 
as well as the distribution of the acceleration due to gravity. Various methods of 
calculation are compared, and a discussion is given of some interesting features 
of the numerical results. These are presented in tabular and graphical form. 
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2. THEORY 

As noted by the first author [6, 7, 91, the Adams-Williamson condition in a 
liquid having Lame elastic parameters p = 0 and h can be expressed in the form 

g+kLo. 
p2 dr 

Here p = p(r) is the density given as a function of distance I from the center of 
the sphere, while g = g(r) is the “downward” acceleration due to gravity, and is 
given in terms of p by 

where G is the gravitational constant. Combining (1) and (2) we have then for p(r) 
the nonlinear integro-differential equation 

dp = _ 7 f 
dr I 

’ p(s) 9 & 
0 

Till now the Lame parameter has possibly been a function of position. But now 
we fix ideas and consider the special but presumably basic case where X is constant, 
and this assumption is maintained throughout the remainder of this paper. 

It is convenient to cast Eq. (3) into a dimensionless form which also serves as 
a single-standard equation for the problem. As a first step we make the trans- 
formation 

p(r) = pay(r), (4) 

where p. = p(0) is the density at the center of the sphere. y(r) is thus a dimensionless 
representation of the density distribution. Equation (3) now takes the form 

4 1 y2 r --- 
& = A2 r2 o I Y(S) s2 ds, 

where 

and A is easily seen to have the dimension of length. In order to complete the trans- 
formation to dimensionless form we now put 

r = Ax, (7) 
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so that x is a dimensionless representation of distance from the center. Our equation 
now takes the form 

(8) 

where we now consider y = y(x), instead of y = y(r). Finally we transform the 
integral by 

s = Au, ds = Adu, (9 

and obtain our equation in standard form 

dy Y2 x -- 
z= xao s 

y(u) u2 du. (10) 

Here, of course, the variable of integration u is also a dimensionless representation 
of the radius. Equation (10) is to be solved subject to the initial conditions 

Y(O) = 1, (10 

2 (0) = 0. 

Condition (11) is evident from the definition of y, while (12) follows from the 
requirement of zero gravity at the center of the sphere. It is worthwhile at this 
stage to cast Eq. (2) for the gravity distribution also into dimensionless form. 
We have 

z(x) = $ joz y(u) u2 du, (13) 

where we have written 

g(r) = Wx) (14) 
with 

B = 4nGAp, = [~T~IG]~/~, (15) 

which has the dimension of acceleration. Thus Z(X) is a dimensionless form of the 
“downward” acceleration due to gravity in the sphere. 

Our task therefore, is now, to solve Eq. (10) subject to the initial conditions (11) 
and (12), and then to compute z(x) as given by (13). This has been carried out in 
several ways, and these are described in the next section. However, some general 
features of the problem are first described here. 

The behavior of the solution as x + 00 is of some interest. In the first place it 
is readily verified by substitution that 

y = 1/z/x (16) 



350 LONGMAN AND LEVIN 

is an exact solution of (lo), but it does not satisfy the boundary conditions (ll), 
(12). Furthermore, as noted below in Section 4, (16) seems to approximate the 
solution to our problem for large x. It is readily verified by L’Hospital’s rule that 
if limz-ta, z(x) exists, then the value of this limit is l/d/2. For suppose 

I = lim [JZ y(u) 242 du]/x2. x-tm 0 (17) 

Then by L’Hospital, 

I= lim ZC = lim X = lim -’ = _L 2 aY 
x+m 2x x+x 2/y x*m ( y2 dx ) 21’ 

by (10). Thus l2 = fr and so 

I= l/1/2. 

We now see from (10) that for large x we have approximately 

and so 

dl I -_ 
dx y = -\/Z ( 1 

l/Y = (x/l/Z) + c 

approximately, for large x, where a is a constant. It follows that indeed 

lim xy = 42, 
x-r* (1% 

as suggested by the numerical results. 
It is of interest to note that these results on the behavior of y(x) and z(x) have 

been obtained independently of the initial conditions (1 l), (12). 
It is instructive also to express (10) as an ordinary differential equation. We 

readily derive 

d2w -@+*g-$=o, (20) 

where 
w  = I/y. (21) 

Equation (20) is an Emden-type equation [3, p. 3811, the general form of which is 

(22) 
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and in our case 
f(w) = -l/w. (23) 

The case 
f(w) = wn, 12 = 0, 1, 2, 3 )... (24) 

gives rise to Emden’s equation [3, p. 3711 which was first studied by the German 
astrophysicist Emden [4] in his work on the thermal behavior of a spherical cloud 
of gas under the mutual attraction of its molecules and subject to the classical 
laws of thermodynamics. The solutions of most interest are the Emden functions, 
which have been studied extensively and tabulated by the British Association for 
the Advancement of Science [2]. 

The case (23), however, has not to the authors’ knowledge been previously 
considered. Of interest, however, is an alternative form of the Emden-type equation 
in which the first-derivative term is absent. This is achieved [3, p. 3821 by making 
the substitution 

w  = i%, (25) 

and in our case leads to the equation 

(26) 

which is to be solved together with the boundary conditions 

I(O) = 0, 

$0) = 1. 

In terms of our original independent variable we have 

5 = X/Y. 

(27) 

(28) 

(2% 

3. METHODS OF SOLUTION 

The first method considered was that of successive approximations which satisfy 
the initial conditions. The first approximation was taken as 

Yl = 1 (30) 

and substituted in the right-hand side of (10). Two integrations and the use of (11) 
led us to the second approximation, 

yz = 1 - W/6), (31) 
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and proceeding in this way we found 

y3 = 1 - (x2/6) + (13/360)x - (11/3240) x6 + (l/8640) x6, (32) 

and a few further approximations. However, the nth approximation is a polynomial 
of degree 3+l - 1, so that we rapidly run into computational difficulties in the 
computer (due to the enormous powers of x that have to be taken into account), 
even though the process seems to converge well for given x. It is not difficult to 
see that at each stage the coefficient of one more term becomes fixed. For example 
the fourth approximation (a polynomial of degree 26) commences with the terms 

y4 = 1 - (x2/6) + (13/360) x4 - (25/3024) x6 + *.a, (33) 

and the last coefficient given above is now the permanent coefficient of x6 in all the 
later approximations. This suggests that we can readily obtain a Maclaurin series 
expansion for V(X), and this is easily done by writing (10) in the form 

substituting a power series for y (from which the reciprocal series is readily 
obtainable, for example recursively by the method given by Longman [8], and 
comparing coefficients. The resulting series, however, which may be regarded as 
the limiting form of yn as n + co, does not seem to converge for x larger than 2. 
However, very rapid convergence can be induced for values of x to about 3.8 
by applying the T-transformation due to the second author [5]. A second T-trans- 
formation enabled the range to be extended to about x = 9. Beyond this, difficulties 
were experienced due to loss of accuracy. 

The best results for large x were obtained in the computer by the Runge-Kutta 
numerical integration process. For this purpose we define 

and our Runge-Kutta equations are 

A = -Y12Y21xa, 92 = YlX2, (37) 

and these are integrated outward starting from 

Y,(O) = 1, Ya(O) = 0. (38) 
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In order to avoid division by zero, at x = 0 the equations were (appropriately) 
replaced by 

31 = 0, 
at x=0. 

32 = 0, 
(39) 

The integration was carried out in the computer, using the IBM subroutine RKGS, 
in steps of 0.1 till x = 300. As an alternative, and a check, Eq. (26) was put in 
Runge-Kutta form by defining 

5 2% 
1 dx ’ (40) 

and then 

52 = -5, (41) 

A = x2142, (2 = 61. (42) 

Here we started from 

El(O) = 1, f2(0) = 0, (43) 

and at x = 0 the equations were (correctly) replaced by 

(1 = 0, l2 = 1. (44) 

The computer also printed out 

Y = ~I~2 

as the solution of (10) with (1 l), (12). 

(45) 

The accuracy of the Runge-Kutta method for large x may be connected with 
the fact that for example (16), which satisfies very different initial conditions at 
x = 0, nevertheless gives a fairly good approximation to the solution for x larger 
than, say, 5. For smaller values of x it was difficult to achieve six-figure accuracy, 
but then other methods were used, as noted above. 

4. NUMERICAL RESULTS AND DISCUSSION 

Table I gives values of y, z for x = O(O.l) 5.0, while Table II gives the same 
quantities for x = 5.0(0.5) 30. Results for larger x are presented in Table III 
for x = 30(5) 300. All results are given to six decimal places, and are believed to 
be correct to this accuracy. 
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TABLE I 

Values of Dimensionless Density y and Dimensionless Gravity z, in Terms of Dimensionless 
Radius x, for x = O(O.1)S.O 

X Y Z x Y Z 

0 l.OOOOOO 0.000000 

0.1 0.998337 0.033300 

0.2 0.993391 0.066402 

0.3 0.985287 0.099112 

0.4 0.974225 0.131251 

0.5 0.960468 0.162654 

0.6 0.944324 0.193177 

0.7 0.926131 0.222698 

0.8 0.906239 0.251119 

0.9 0.884999 0.278366 

1.0 0.862743 0.304387 

1.1 0.839785 0.329153 

1.2 0.816405 0.352651 

1.3 0.792852 0.374887 

1.4 0.769339 0.395880 

1.5 0.746043 0.415658 

1.6 0.723113 0.434260 

1.7 0.700663 0.451731 

1.8 0.678785 0.468120 

1.9 0.657545 0.483479 

2.0 0.636990 0.497862 

2.1 0.617150 0.511323 

2.2 0.598043 0.523915 

2.3 0.579674 0.535692 

2.4 0.562040 0.546703 

2.5 0.545131 0.556998 

2.6 0.528930 0.566625 

2.7 0.513419 0.575626 

2.8 0.498575 0.584044 

2.9 0.484375 0.591919 

3.0 0.470792 0.599287 

3.1 0.457800 0.606183 

3.2 0.445374 0.612640 

3.3 0.433487 0.618688 

3.4 0.422114 0.624354 

3.5 0.411229 0.629666 

3.6 0.400809 0.634646 

3.7 0.390831 0.639318 

3.8 0.381271 0.643703 

3.9 0.372109 0.647820 

4.0 0.363324 0.651688 

4.1 0.354898 0.655322 

4.2 0.346811 0.658739 

4.3 0.339046 0.661952 

4.4 0.331587 0.664975 

4.5 0.324418 0.667821 

4.6 0.317525 0.670501 

4.7 0.310893 0.673025 

4.8 0.304510 0.675404 

4.9 0.298364 0.677646 

5.0 0.292442 0.679761 
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TABLE II 

Values of Dimensionless Density y and Dimensionless Gravity z, in Terms of 
Dimensionless Radius x, for x = 5.0(0.5)30.0 

355 

X Y Z X Y 

5.0 0.292442 0.679761 

5.5 0.265837 0.688680 

6.0 0.243439 0.695395 

6.5 0.224375 0.700482 

7.0 0.207983 0.704353 

7.5 0.193760 0.707306 

8.0 0.181315 0.709560 

8.5 0.170343 0.711277 

9.0 0.160604 0.712579 

9.5 0.151906 0.713557 

10.0 0.144092 0.714283 

10.5 0.137037 0.714809 

11.0 0.130637 0.715178 

11.5 0.124806 0.715424 

12.0 0.119472 0.715570 

12.5 0.114574 0.715640 

13.0 0.110062 0.715647 

13.5 0.105892 0.715606 

14.0 0.102026 0.715526 

14.5 0.098433 0.715416 

15.0 0.095086 0.715283 

15.5 0.091959 0.715132 

16.0 0.089032 0.714968 

16.5 0.086286 0.714794 

17.0 0.083705 0.714613 

17.5 0.081274 0.714428 

18.0 0.078982 

18.5 0.076815 

19.0 0.074765 

19.5 0.072822 

20.0 0.070978 

20.5 0.069225 

21.0 0.067558 

21.5 0.065969 

22.0 0.064453 

22.5 0.063006 

23.0 0.061623 

23.5 0.060299 

24.0 0.059032 

24.5 0.057817 

25.0 0.056651 

25.5 0.055314 

26.0 0.054455 

26.5 0.053421 

27.0 0.052425 

27.5 0.051465 

28.0 0.050540 

28.5 0.049648 

29.0 0.048788 

29.5 0.047956 

30.0 0.047153 

Z 

0.714239 

0.714050 

0.713860 

0.713672 

0.713485 

0.713301 

0.713120 

0.712943 

0.712769 

0.712599 

0.712433 

0.712271 

0.712114 

0.711960 

0.711811 

0.711666 

0.711525 

0.711389 

0.711256 

0.711128 

0.711003 

0.710882 

0.710765 

0.710651 

0.710541 
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TABLE III 

Values of Dimensionless Density y and Dimensionless Gravity z, in Terms 
of Dimensionless Radius x, for x = 30(5)300 

x Y Z X Y Z 

30 0.047153 0.710541 

35 0.040391 0.709612 

40 0.035330 0.708932 

45 0.031400 0.708430 

50 0.028258 0.708056 

55 0.025688 0.707774 

60 0.023548 0.707559 

65 0.021737 0.707395 

70 0.020185 0.707268 

75 0.018841 0.707170 

80 0.017664 0.707094 

85 0.016626 0.707035 

90 0.015703 0.706990 

95 0.014877 0.706954 

100 0.014134 0.706927 

105 0.013461 0.706907 

110 0.012850 0.706891 

115 0.012292 0.706880 

120 0.011780 0.706872 

125 0.011309 0.706867 

130 0.010874 0.706864 

135 0.010472 0.706863 

140 0.010098 0.706863 

145 0.009750 0.706864 

150 0.009425 0.706867 

155 0.009122 0.706870 

160 0.008837 0.706873 

165 0.008569 0.706877 

170 0.008317 0.706882 

175 0.008080 0.706886 

180 0.007855 0.706891 

185 0.007643 0.706896 

190 0.007442 0.706901 

195 0.00725 1 0.706906 

200 0.007070 0.706911 

205 0.006898 0.706916 

210 0.006734 0.706921 

215 0.006577 0.706926 

220 0.006428 0.706931 

225 0.006285 0.706935 

230 0.006148 0.706940 

235 0.006017 0.706945 

240 0.005892 0.706949 

245 0.005772 0.706954 

250 0.005657 0.706958 

255 0,005546 0.706962 

260 0.005439 0.706966 

265 0.005336 0.706970 

270 0.005238 0.706974 

275 0.005142 0.706978 

280 0.005051 0.706982 

285 0.004962 0.706985 

290 0.004876 0.706989 

295 0.004794 0.706992 

300 0.004714 0.706996 
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Some results are also given in graphical form. Figure 1 shows a plot of u(x) for 
0 < x < 9. Also in this figure is shown the behavior of the function d/2/x (indicated 
by crosses). As remarked in Section 2, this function approximates y for large x. 
Figure 2 shows a plot of z(x) for 0 < x < 36, and the curve appears to be 
approaching its asymptote z = l/ ~0. However, when the results for 10 < x <290 
are plotted with an enlarged z-scale (Fig. 3) it is evident that z(x) goes through a 
(very flat) minimum before approaching the asymptote. There is also a maximum 
value of Z(X) which appears very flat in Fig. 2, but which is very evident in Fig. 3 
where the enlarged z-scale is employed. The maximum and minimum are located 
approximately at x = 12.825 and 136.6 respectively, and we have the following 
values of y, z. 

X Y z 

12.825 0.111600 0.715650 
136.6 0.010349 0.706863. 

X 

0.04 1.0 2.0 3.0 41) 51) 6.0 70 60 9.0 
-x 

FIG. I. Dimensionless density y  plotted against dimensionless radial distance x from the 
center of the sphere. The function y  = d/z/x (indicated by crosses) is shown for comparison. 
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FIG. 2. Dimensionless gravity z plotted against dimensionless distance x from the center 
of the sphere. 

0.705 - 

0.700 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ f ,  I, I, 1 I I I I I III 1 
IO 50 loo min EQ zoo 250 -x 

FIG. 3. Dimensionless gravity z plotted against dimensionless distance x from the center 
of the sphere. 
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It would seem that the existence of a maximum and a minimum of g(r) is of some 
physical interest in this basic problem where the Lame parameter h is a constant, 
but the authors have not considered this further at the present time. Also the fact 
that g(r) approaches asymptotically a finite value as r increases is presumably 
not without physical interest. 

5. CONCLUSION 

The density and gravity distribution in a self-gravitating liquid sphere of constant 
compressibility, in which the Adams-Williamson condition holds, have been 
calculated. The results in tabular and graphical form exhibit some interesting 
features. 
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